ELECTRICAL PROPERTIES OF DIELECTRIC MATRIX
WITH SPHERICAL INCLUSIONS OF METAL

A. F. Chudnovskii and L. V. Gorfunkel' UDC 621.315.612:537.226.1

The dielectric permittivity and electrical conductivity of a dielectric matrix with spherical
inclusions of metal are calculated. The theoretical formula is verified experimentally and
compared with other known formulas.

Structurally inhomogeneous materials consisting of several phases are used in various branches of
engineering. Such materials include inhomogeneous and porous dielectrics and also dielectrics with inclusions
of conducting particles. The wide application of many of these materials is impeded by a lack of information
on their physical properties, and, in particular, their electrical properties. The electrophysical properties
of multiphase materials have been investigated experimentally [1-5], and attempts at theoretical calculation
have been made [1-3, 6-13]. In [9-13], in particular, theoretical formulas are presented for the averaged
parameters of a two-phase system consistingofa dielectric matrix with conducting inclusions. The results ob-
tained depend very greatly on the model of the system adopted: For example, the formulas for the averaged
parameters of the medium derived in [9-11] assume cubic conducting inclusions (Fig. 1a), while those in [10,
12, 13] assume spherical inclusions.

In the present paper, the dielectric permittivity and electrical conductivity of a system consisting of a
dielectric matrix with spherical inclusions of metal are calculated. The results obtained are verified experi-
mentally, and previously derived formulas are examined.

The model of the two-phase system used for the calculations is as follows. The sample whose averaged
parameters are to be established is a cube of side 1 em. Hence its electrical resistance (when a voltage is
applied across opposite faces) is equal to the resistivity. The spherical inclusions in the dielectric are all of
the same diameter d, and are equally spaced; their centers lie at the points of the simplest three-dimensional
cubic lattice (Fig. 1b).

In deriving formulas for the dielectric constants of the system, it is assumed that there is no through
conduction of the dielectric, and that the electrical resistance of the metal is practically zero.

When a voltage is applied across opposite faces of the cube, the electrical capacitance of the sample is
C = keay 1)
where gav is the averaged dielectric permittivity of the system, which has to be found.

If we now imagine the sample to be divided into cylindrical columns perpendicular to the electrodes,
each containing a row of metallic inclusions, we obtain a number of parallel-connected capacitors, all but one
of which contain inclusions. Assuming that over the length of the cube there are n inclusions, we have n?
columns containing inclusions (Fig. 1b). Therefore,

C= Cd - n’Ccol, (2)
where C,q] is the capacitance of a column of material containing n spherical metallic inclusions; Cq is the
capacitance of the body obtained when 21l the columns containing the inclusions are removed from the sample.

Assuming initially that the electric field between the inclusions does not extend beyond the limits of the
column, i.e., that the force tube is a cylinder of diameter d, the capacitance of the part of the sample not con-~

taining inclusions is
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Fig. 1. Model of dielectric matrix with inclusions: Fig. 2. Diagram for calculating the capac-
a) cubic; b) spherical, itance of an elementary capacitor.
Cyq = kesS, = ke, ( 1 — n2d? _ZK) = key (1— 0.785c%. (3)

Here g, is the dielectric permittivity of the matrix phase; S, is the area of the electrode, excluding the ends of
the columns; md%/4 ~0.785; & isthe cross-sectional area of each column; cgp = nd.

Note that the calculation of §; in this way is accurate only for cubic inclusions (neglecting edge effects);
this is also true of the formulas derived in [11].

The capacitance of each column Cpo] =C'/(m + 1), where n + 1 is the number of dielectric intervals be-
tween the metallic inclusions in the columns; C!' is the capacitance of each such interval. (We assume that
each column consists of n + 1 series-connected elementary capacitors in which the electrodes are metallic in-
clusions.)

It is possible to calculate the capacitance of the capacitor formed by two charged insulated spheres using
a fairly complicated method [16]. In our case, however, the spheres are not perfectly insulated, and there-
fore we derive the capacitance between them using the scheme shown in Fig. 2. For a sufficiently large dis-
tance between the inclusions, the lines of force of the field normal to the spherical surface form arcs of circles
[16]. The radius of each of these (if there is an angle o between the column axis and the tangent to the lines
of force at the point of contact with the surface of the sphere) is

R =0D = 0C/sina = _1 (_l__i): l+d
sina \ 2 2

where [ is the distance between inclusions.

The length of the lines of force is

20 (I -+ d) e a(l+d)—dsina

l,=L—d=2Ra—d = - -
’ 2sin sina

where [ is the length of the arc OAMA,0O;.

A capacitor with annular electrodes of infinitesimal width has capacitance

in? 2 2 gin?
dC — ke,dS|l, = ke, sin® o cos adoc.nd _ keyd sxr’x o CoS ocfioc ,
2[({ +d) a —dsino] 2{[( + d)/d] @ — sina}

since

dS = 2nABd (AB) = (d® sin acos ada)/2.
Then

C = kegnd S‘x ' sin® e cos audo ' ()
2 [(l --d)/d] oo —sine
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TABLE 1. Dependence of Some Auxiliary Calculational Values on
the Concentration of Metallic Inclusions

5} 0,1 0,2 0,3 0,4 0,5 l 0,524

Csp 0,576 0,726 0,832 0,915 0,985 1
T 1,74 1,38 1.20 1,093 1,016 I
J 0,9187 1,625. 3,0 5,909 20,845 —

TABLE 2. Values of the Function f(8) = egy/¢, Calculated from
Egs. (8), (9), (11), (12), and (14)

e, vol. % 10 30 40 50 70 90
Eq. (8) 1,576 3,37 8,919 32,54 — —
Eq. (9) 1,333 92,285 4,0 8,0 28
Eq. (11) 1,184 1,935 3,368 7,38 96,76
Eq. (12) 1,376 3,95 7,0 - -
Eq. (14) 1,372 3,43 8,0 37 1000

To simplify the problem we assume that only lines of force with @4 not more than 45° contribute to the capaci-
tance, i.e., the other lines of force are associated with leakage, which we neglect. Then

/4
C - ke,nd its‘ sin® o cos ada _ keyd S’ sin® a cos a da
2 [( - d)/d] & —sine 2 Ta—sina
: 0
where
d d c
. sp
27t -
Let [ _Sifacosade . inen
To —sina
h
C = _kﬂ%d_J_ _ (6)
We now find cgp
6 = nn®d?/6; cop= 13/1'919' (7)

Results calculated for cgp and T for various volume concentrations of inclusions are shown in Table 1, together

with values of the integral J found by a numerical method. Then

kegndn®J _ kegnespl
2(n + 1) 2

C=C,+Cy=ke, (1——0.7850;"IJ +nlegpf2).

ol |2, Cy=n*C =

C

col T !

Comparing this with Egs. (1) and (2), we have finally
Bav = 80(1—0.785CS2P+ TEJCSP/Q) = Sof (CSP). (8)

Thus, by means of Egs. (7) and (8) the average dielectric permittivity of a two-phase composite system can
be calculated as a function of the parameters of the matrix phase and the concentration of metallic inclusions.

Note that it is impossible to calculate &5y for concentrations 6 above 0.524. In fact, for inclusions
arranged in a simple cubic lattice, the maximum concentration of the inclusions (when the spheres are touch-
ing) is

oz = V Vo, = nd®/64° = 0.524.

sp ' cul

In other words, using Eq. (8) it is possible to calculate the average dielectric permittivity of the system up
to the maximum concentration of inclusions which is permissible in the model assumed. For closest packing
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of the metallic spheres, the limiting concentration rises to 0.74 {17], but this is to change the model of the
system and hence also the results obtained.

In [10], a formula for &4y was derived for spherical inclusions of a second phase; for metallic spheres
it takes the form

Eay= &, (1 - 20)/(1 —6). (9)

It applies for concentrations in the range from 0 to 1 but, as is evident from what has been said, this is a
shortcoming. The formula of [9] is said to apply to both cubic and spherical inclusions:

9
= H . 0
v =5 [H (1—6) (3+so>/<s1—eo>} a0

It can be rearranged into a form identical to Eq. (9), which means that, like the formula in [11],

2
S

it can be used for inclusion concentrations between 0 and 1 only in the case of cubic inclusions with parallel
faces (since, as the concentration of inclusions increases toward 1, the dielectric layer between the cubes
may be as thin as required, right up to contact between the metal particles).

Other formulas were proposed in [12-14] for the calculation of the dielectric constants of emulsions and
suspensions of conducting spherical particles (drops of aqueous salt solution dispersed in oil [12], mercury
and soot conglomerates in oils and paraffins [13-14]); in {12]

1+6 . g fav _ 149 a2)

1—20 & 1—20

Eay= &

in [13] (after reducing it to a form convenient for calculations)

=g _'__9_(2_:_80)

av= 8 T 13
also in [15] the "mixing rule”
f(€) = 1/(1—8)3, (14)
and in (18] the conductivity equation
a/o, = (—®/2) Ig(mn/6—0)+ .... ‘ (15)

The virtue of the formulas in {12, 14, 15] is that they may be reduced to an explicit relation between 1 (6)
and 6, i.e., they are expressed in the form eyy/g; = f(#). The main shortcoming of Eq. (13) is that it does
not reduce to such a simple and convenient form. Like Eq. (8) derived in the present work, Egs. (12) and (15)
are valid up to concentrations of 0.5, which corresponds to a system with spherical conducting inclusions (the
case of simple cubic packing of the particles). But the concentration limit of Eq. (12) is somewhat lower than
that of Eq. (8), while Eq. (15) neglects the conductivity of a portion of the dielectric matrix, which reduces its
accuracy.

‘ Table 2 presents values of the function f(8) = eav/¢, calculated from Egs. 8), (9), (11}, (12), (13), and (14).
In these equations € should be taken to denote both the dielectric permittivity and the electrical conductivity.

It is assumed that in the case of electrical conductivity (the current problem), the metal always has infinitely
large conductivity. Unless the difference between the conductivity of the dielectric and the inclusions is very
large (more than two orders of magnitude), it is necessary to take the finite values of the metal and dielectric
permittivity explicitly into account.

If the ratio between the resistivities of the metal and the dielectric is more than 100, the complication
involved is not justified, and Eq. (8) provides sufficient accuracy. :

Analysis of the data of Table 2 shows that Eq. (12) gives the results closest to those of Eq. (8).

As an experimental verification of Eq, (8), the dielectric permittivity of glass—metal samples (CaO—
Al,0,—8i0, glass and Ni) was determined. The samples were obtained by wet vibrogrinding of the mixture,
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dry pressing with binder (paraffin, polyvinylbutyral), and sintering in a hydrogen tubular furnace at 900~1000°C.
The content of metal was 6.2 and 9.1 vol.%. The measurements were carried out on an E9-4 Q-meter at a fre-
quency of 1 MHz. The values of £y obtained were 9.75 and 10.3, while for samples of the glass alone sintered
in the same conditions the value of £ obtained was 10.6 (this high value of ¢ for a nonalkali glass is due to the
incomplete removal of the binder in the H, medium and the appearance of free carbon). The calculated values
of g4y for these samples were 7.78 and 8.25, which are 15-20% lower than the experimental values. The dis-
crepancy may be the result of the following factors: 1) The model assumed for the system is simplified: in
reality, the metallic particles may be far from spherical in form and in addition their positions are not strictly
ordered but chaotic; 2) in Eq. (8) the first part, corresponding to the capacitance and conductivity of the vol-
ume of the sample that does not contain inclusions [see Eq. (2)], is known to be too high, and the second part
is also not sufficiently accurate: the choice of oy = /4 as the upper limit of integration ig to some extent ar-
bitrary.

It is also necessary to bear in mind two factors that have opposite effects on the experimental value of &:
The presence of a small amount of carbon in the sample after sintering in hydrogen increases the value of €,
while the presence of porosity reduces it. As the same time, a muffle furnace with an oxidizing gas medium
cannot be used, because of the risk of oxidizing the metal particles.

What has been said above leads us to conclude that in the case of high concentrations of spherical in-
clusions, Eq. (8) is preferable to the other formulas, if only because of its consistency, For inclusions of
complex shape, it is necessary to introduce a correction. It is very desirable to verify the proposed model
by other experimental methods, for example, using an electrolytic bath, but this lies outside the scope of the
present work.

Note that, for simplicity, phenomena complicating the flow of a current through the dielectric (accumula-
tion of space charge and distortion of the electric field, intersurface polarization, etc.) were neglected in
deriving the formulas in the present work. These factors must be taken into account, in particular, in calculat-
ing the dielectric permittivity and electrical conductivity of a dielectric with inclusions in the case of a variable
electric field at low and medium frequencies,

NOTATION

d, diameter of the spherical particles of metal; n, number of inclusions over the length of the cubic
sample; cgp, volume constant of the two-phase system; C, electrical capacitance of the sample orits individual
parts; €, dielectric permittivity; «, angle betweenthe tangent to thelines of force and the axis joining the cen-
ters of two adjacent inclusions; R, radius of a line of force; I, distance between inclusions; 8, volume content
of metallic phase.
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RESISTANCE TO MOTION OF BODIES
IN A FLUIDIZED BED

A, I. Tamarin, Yu. E. Livshits, UDC 621.785:66.096.5
D. M. Galershtein, V. P. Zhitkevich,
and 8. S. Zabrodskii

The force resisting the motion of bodies of revolution in a horizontal direction in a fluidized
bed is measured. A generalization of the experimental data is used to obtain a relationship
estimating the resistive forces arising in a fluidized bed for flow around obstacles.

In industrial apparatuses, fluidized beds are used to wash around a variety of bodies (heat-exchanger
surfaces, pipes for distributing reagents, immobile sediments, sensors, and so onj. In some kiln construc-
tions components being heat treated are moved through a fluidized bed. In all cases, in order to calculate the
strength of the mountings, supports, and other structural elements, one requires information on the forces
arising from the flow around bodies of a fluidized bed. The data published in the literature on this topic are
very limited and relate to the average vertical forces acting on fixed model bodies immersed in the fluidized
bed [1-3]. At the same time, as correctly noted in [1, 3], the instantaneous forces arising from the flow
around a body of a dispersed material that is transported upward in the wake of a bubble are much greater
than the average forces, in some cases by more than an order of magnitude. In order to be able to calculate
the instantaneous forces in a fluidized bed, we need to know, besides the velocity of ascent of the bubbles, the
dependence of the force on the velocity of motion the surrounding medium, on the characteristics of the me-
dium, and on the size and shape of the body around which the medium is flowing. The present paper reports
an experimental study of this question. ‘

The experiments were performed in a column of cross section 275 X 70 mm which had a gas-distribut-
ing grid made from a sheet of felt of thickness 6 mm. The dispersed material was three fractions of guartz
glass (d = 0.15, 0.23, and 0.63 mm; u, =4, 6, and 32 cm/sec) and one fraction of silica gel (d = 0.19 mm; u; =
2 cm/sec). Fluidization was by means of air at room temperature for N from 1 to 5. The initial height to
which the column was filled was 29 cm. A dynamometer sensor was moved backward and forward along the
horizontal (more accurately, along an arc of radius 45 cm) by means of a special crank/connecting rod

Fig. 1. Dependence of force of
resistance ¥ (N)for a sphereon
its velocity of motion u (m/sec)
in a fluidized bed of quartz sand
d =0.23 mm: points 1, 2, 3, and
4 correspond, respectively, to
fluidization numbers 1.2, 2, 3,
and 5 for a height above the grid
of 125 mm. Points 5, 6, 7, and 8
correspond to fluidization num-
bers 1.2, 2, 3, and 5 for a height
above the grid of 225 mm.
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